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is the reciprocal of the average inverse shock 
speed of the material, averaged over both the 
random grain geometry and the distribution 
of shock speeds within each grain. This is 
the overall rate at which the shock front will 
move through the crystal.

According to (Eq. 1), the propagation time 
can be separated into the sum of a deter-
ministic part and a random part with mean 
zero. Using a version of the central limit 
theorem, it can be shown that in the limit of 
large x, the integral in (Eq. 1) reduces to a 
Gaussian random variable (RV), such that

  .      (3)

Here  χ(y) is the spatial autocorrelation 
function of the integrand in (Eq. 1) and Z is a 
standard normal deviate.

Equation (3) gives the propagation time as a 
RV in terms of a fixed penetration distance x. 
By solving (Eq. 3) for x, we may obtain the 
random penetration distance as a function of 
fixed time t. The resulting relation can be 
manipulated to yield a relationship between 
the shock-front position x (i.e., the average 
value of x) and the shock-front width   (i.e., 
twice the standard deviation of x):
	 		
	 		
    	 .    (4)

Here we have introduced d, a measure of the 
average grain diameter, in order to render 
(Eq. 4) scale invariant.

As it stands, (Eq. 4) is completely general, 
though unwieldy, since it requires complete 
knowledge of the autocorrelation function  
χ(y). We can obtain a more useable relation 
by making the additional assumption 
that the shock speed within each grain is 
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Consider a polycrystalline solid 
comprising numerous grains, 
where each grain is composed 
of a different crystallographic 

orientation of some material. If a shock is 
induced at one side of the material and 
subsequently penetrates into the polycrystal, 
how does the initially sharp shock front 
grow in width with time? Meyers [1,2] 
has proposed a model in which the major 
contribution to the shock-front broadening 
comes from the differences in shock speed 
that distinct points on the shock front 
experience as they move through different 
grains. This model explicitly ignores 
other effects, such as scattering at grain 
boundaries, which may also influence the 
evolution of the shock-front width. The aim 
of this work is to explore the mathematical 
implications of the Meyers model, and to 
derive a useable analytical expression for the 
shock-front width.

Figure 1 shows a schematic representation of 
our polycrystal, along with an illustration of 
the coordinate system to be used. The shock 
front is assumed to originate on one face of 
the polycrystal, at y = 0, and penetrate into 
the bulk of the solid. Different points on the 
shock front propagate independently in 
straight lines in the +y direction, their speeds 
at any given location determined by the 
properties of the grain they are passing 
through. A particular sample ray arrives at a 
location y = x after a propagation time t. 
Since the geometry of the grains and the 
shock speeds therein are generally random, 
the relationship between x and t will be a 
random one. If the shock-front speed as a 
function of position for a sample ray is v(y), 
then the propagation time to reach x is		
	      
                 
              ,     (1) 
where

                                         
                          (2)
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uncorrelated with the geometry of the grains 
themselves. In this case, it can be shown that 
(Eq. 4) reduces to

	

	

,   (5)
where d* and s are known in stochastic 
geometry as the average chord length and 
standard deviation of the chord length, 
respectively [3]. Note that for the common 
special case of a Poisson Voronoi lattice in 
three dimensions, where d is taken as the 
mean caliper length [4], we have

 .                (6)

The expression (Eq. 5), along with a choice 
for the distribution of shock speeds within 
the polycrystal, yields a testable prediction 
for the dependence of the shock-front 
width on shock position. By simulating 
the model directly, we can test the steps 
leading up to (Eq. 5). The results of several 
such simulations for various system widths 
L are shown in Fig. 2. The shock speed 
distribution and grain geometry were 
chosen to be consistent with a sample of 
polycrystalline iron at equilibrium in a body-
centered cubic state, with a 3-D Poisson 
Voronoi geometry. We see that to within 
noise the simulation results are consistent 
with the theoretical prediction (Eq. 5). More 
realistic polycrystalline simulations 
using the embedded atom method [5,6] 
are currently being performed, in order 
to verify how well the assumptions and 
predictions of this model compare with a 
real physical system.
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Fig. 1.
A schematic represen-
tation of the coordi-
nate system in our 
polycrystal. The arrow 
indicates the direction 
of shock propagation.

Fig. 2.
Results for the evolu-
tion of the shock-front 
width, as determined 
by direct simulation of 
the ray model. Shown 
are curves for various 
values of the system 
width L.




